

Max Marks: 60

1.

2.

3.

4.

5.

6.

Date: 09.10.2022

JB 2 MR BATCH CHEMISTRY : DCT

	Topic: A	Atomic	Structure (Till l) + Mole Conc	ept (Full))	
The ef	ffective neutron ca	apture rad	ius of a nucleus hav	ing a cros	s-section of 1.0 ba	ırn is		
[Giver	n, 1 bam = 1.0×1	$0^{-24} \mathrm{cm}^2$]						
(a)	$5.6 imes 10^{-13} cm$	(b)	$4.3 \times 10^{-13} \text{cm}$	(c)	$2.3 imes 10^{-11} \text{ cm}$	(d)	$5.6 imes 10^{-24} \text{ cm}$	
The a	rgument which fav	vours the	particle nature of ca	thode rays	s is			
(a)	they produce flu	lorescenc	e					
(b)	they travel throu	ugh vacut	ım					
(c)	they get deflected	ed by elec	etric and magnetic fi	elds				
(d)	they cast shado	ws of obje	ects present in their	way				
Magn	itude of deflection	of catho	de rays in discharge	tube is m	ore when			
(a)	magnitude of ch	narge of tl	ne particle is more					
(b)	greater interacti	on with the	ne electric or magne	tic field				
(c)	less mass of the	particle						
(d)	all the above							
A neu	tral atom (Atomic	no. > 1)	consists of					
(a)	Only protons			(b)	Neutrons + pro	tons		
(c)	Neutrons + elec	etrons		(d)	Neutron + proto	on + electro	n	
Atoms	s have a mass of th	he order						
(a)	10^{-28}	(b)	$10^{-15} \mathrm{kg}$	(c)	$10^{-26} { m g}$	(d)	$10^{-15} { m g}$	
The ra	atio of charge and	mass wou	Ild be greatest for					
(a)	Proton	(b)	Electron	(c)	Neutron	(d)	α particle	

Learning with the Speed of Mumbai and the Tradition of Kota

7.	Catho	ode rays are						
	(a)	electromagnetic v	vaves		(b)	radiation		
	(c)	stream of alpha pa	articles		(d)	stream of electrons		
8.	The fi	raction of volume oc	cupied b	by the nucleus with re	espect to	the total volume of a	n atom is	8
	(a)	10^{-15}	(b)	10 ⁻⁵	(c)	10 ⁻³⁰	(d)	10^{-10}
9.	The n	umber of oxygen ato	oms in 4	.4 g of CO ₂ is approx				
	(a)	$6 imes 10^{22}$	(b)	$1.2 imes 10^{23}$	(c)	$6 imes 10^{23}$	(d)	$12 imes 10^{23}$
10.	The n	nass of 112 cm ³ of C	CH4 gas a	at STP is				
	(a)	0.08 g	(b)	0.8 g	(c)	0.16 g	(d)	1.6 g
11.	7.5 gr	ams of a gas occupy	5.8 lite	rs of volume at STP t	he gas is	3		
	(a)	CO_2	(b)	N_2O	(c)	CO	(d)	NO
12.	One li	iter of a gas at STP	weight 1	.16 g it can possibly b	be			
	(a)	O_2	(b)	CO	(c)	C_2H_2	(d)	CH_4
13.	What	is the normality of a	a 1 M so	lution of H ₃ PO ₄ ?				
	(a)	3.0 N	(b)	1.0 N	(c)	2.0 N	(d)	0.5 N
14.	The n	nolality of a H ₂ SO ₄ s	solution	is 9. The weight of th	ne solute	e in 1 kg H ₂ SO ₄ solution	on is:	
	(a)	900 g	(b)	469 g	(c)	882 g	(d)	9 g
15.	Equiv	alent weight of KM	nO4 acti	ng as an oxidant in ac	idic me	dium is		
	(a)	The same as its m	olecular	weight	(b)	Half of its molecula	ar weigh	t
	(c)	One-fifth of its m	olecular	weight	(d)	One-third of its mo	lecular v	veight

Max. Marks: 60

Date: 09.10.2022

JB 2 MR BATCH MATHEMATICS : DAILY CLASS TEST Topics: Permutation and Combination

16.	How many different arrangements can be made out of the letters in the expansion A ² B ³ C ⁴ , when written in full?							
	(a)	2! 3! 4!			(b)	2! + 3! + 4! (2! 3! 4	4!)	
	(c)	$\frac{9!}{2!+3!+4!}$			(d)	<u>9!</u> 2! 3! 4!		
17.	The n	umber of proper di	visors of	1800 which are also	divisible	by 10, is		
	(a)	34	(b)	18	(c)	27	(d)	None of these
18.	A par	allelogram is cut by	v two set	s of m lines parallel to	o its side	s. The number of par	allelogra	am, then formed is
	(a)	$(^{m+2}C_2)^2$	(b)	$(^{m+1}C_2)^2$	(c)	$({}^{m}C_{2})^{2}$	(d)	None of these
19.	•						(2n + 1)) distinct coins. If the
		2		can select coins is 25	-	•		
	(a)	32	(b)	16	(c)	8	(d)	4
20.	Total	number of positive	integral	solutions of $15 < x_1 +$	$-x_2 + x_3$	\leq 20, is equal to		
	(a)	1245	(b)	685	(c)	1025	(d)	None of these
21.	If in a	chess tournament	each con	testant plays once ag	ainst eac	h of the others and in	all 45 g	ames are played, then
	the nu	mber of participan	ts is					
	(a)	15	(b)	10	(c)	9	(d)	None of these
22.	${}^{n}C_{r} +$	${}^{n}C_{r-1} + {}^{n}C_{r-2} =$						
	(a)	$^{n+1}C_{r\!-\!1}$	(b)	$^{n+2}C_{r}$	(c)	$^{n+2}C_{r+1} \\$	(d)	$^{n+1}C_r$

23.

A man has 7 friends. In how many ways he can invite one or more of them for a tea party

(a) 256 (b) 130 (c) 127 (d) 128

24. A library has a copies of one book, b copies of each of two books, c copies of each of three books and single copy of d book. The total number of ways in which these books can be distributed is

(a)
$$\frac{(a+2b+3c+d)}{a!(b!)^2(c!)^2}$$
 (b) $\frac{(a+2b+3c+d)!}{a!b!c!}$ (c) $\frac{(a+b+c+d)!}{a!b!c!}$ (d) None of these

25. The number of lines drawn through 6 points lying on a circle, is
(a) 12
(b) 15
(c) 24
(d) 20

26. The sum of proper divisors of 72 (1 and 72 are exclude) is equal to
(a) 194 (b) 195 (c) 122 (d) None of these

27.	The values of	$\frac{1}{2}$ +	$\frac{1}{2}$	is equal to
		2n+1	2n+1	1
		c_r	c_{r+1}	

(a)
$$\frac{2n+2}{2n+1} \cdot \frac{1}{2^n C_r}$$
 (b) $\frac{1}{2^n C_r}$ (c) $\frac{1}{2^n C_{r+1}}$ (d) None of these

28. Total number of divisors of 480, that are of the form 4n + 2, n ≥ 0, is equal to

(a) 4
(b) 2
(c) 3
(d) None of these

29. Number of zeroes at the end of 300! is equal to

(a) 98 (b) 74 (c) 89 (d) 75

30. A box contains two white balls, three black balls and four red balls. In how many ways can three balls be drawn from the box if at least one black ball is to be included in the draw?
(a) 46
(b) 64
(c) 45
(d) None of these

Max Marks: 60

Date: 09.10.2022

JB 2 MR BATCH CHEMISTRY : DCT ANSWER KEY Topic: Atomic Structure (Till Lecture 3) + Mole Concept (Full)

1.	(a)	2.	(c)	3.	(d)	4.	(d)	5.	(a)
6.	(b)	7.	(d)	8.	(a)	9.	(b)	10.	(a)
11.	(d)	12.	(c)	13.	(a)	14.	(b)	15.	(c)

Max Marks: 60

Date: 09.10.2022

JB 2 MR BATCH MATHEMATICS : DCT ANSWER KEY Topics: Permutation and Combination

16.	(d)	17.	(b)	18.	(a)	19.	(d)	20.	(b)
21.	(b)	22.	(b)	23.	(c)	24.	(a)	25.	(b)
26.	(c)	27.	(a)	28.	(a)	29.	(b)	30.	(b)